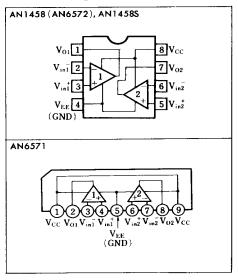
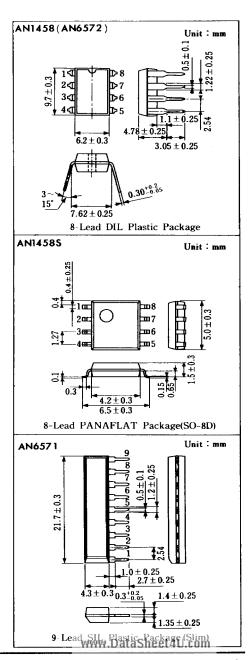
# AN1458 (AN6572),AN1458S, AN6571

## **Dual Operational Amplifiers**


#### Outline


The AN1458(AN6572), the AN1458S, and the AN6571 are dual operational amplifiers with phase compensation circuits builtin and also an output short-circuit protection built-in, so that they are highly stable and can be used widely in various electronic circuits.

#### **■** Features

- Built-in phase compensation circuit
- Wide range of common-mode input voltage, no latch-up
- Built-in short-circuit protection
- Low input offset voltage : V<sub>I(offset)</sub> = 0.5mV typ.
- Low input offset current :  $I_{10} = 10$ nA typ.

#### ■ Block Diagrams





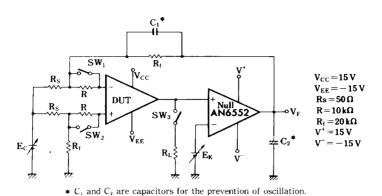
# OPERATIONAL AMPLIFIERS

### Pin

#### <AN1458 (AN6572), AN1458\$>

#### <AN6571>

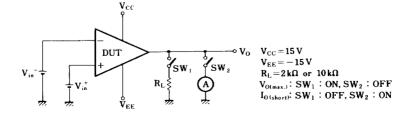
| Pin No. | Pin Name               | Pin No. | Pin Name               |
|---------|------------------------|---------|------------------------|
| 1       | Ch. 1 Output           | 1       | Vcc                    |
| 2       | Ch. 1 Invert Input     | 2       | Ch. I Output           |
| 3       | Ch. 1 Non Invert Input | 3       | Ch. 1 Invert Input     |
| 4       | V <sub>EE</sub> (GND)  | 4       | Ch. 1 Non Invert Input |
| 5       | Ch. 2 Non Invert Input | 5       | V <sub>EE</sub> (GND)  |
| 6       | Ch. 2 Invert Input     | 6       | Ch. 2 Non Invert Input |
| 7       | Ch. 2 Output           | 7       | Ch. 2 Invert Input     |
| 8       | Vcc                    | 8       | Ch. 2 Output           |
|         |                        | 9       | Vcc                    |


## **■** Absolute Maximum Ratings (Ta=25°C)

|                      | Item                       | Symbol           | Rating          | Unit       |  |
|----------------------|----------------------------|------------------|-----------------|------------|--|
|                      | Supply Voltage             | Vcc              | ±18             | V          |  |
| Voltage              | Differential Input Voltage | V <sub>ID</sub>  | ±30             | V          |  |
| .DataSheet4U.con     | Common-Mode Input Voltage  | V <sub>ICM</sub> | ±15             | V          |  |
| Danier Diagination   | AN1458 (AN6572), AN6571    | Pn               | 500             | mW         |  |
| Power Dissipation    | AN1458S                    | r <sub>D</sub>   | 360             |            |  |
| Operating Ambie      | nt Temperature             | Topr             | -20~+75         | $^{\circ}$ |  |
| Ctonomo Tomonomotomo | AN1458 (AN6572), AN6571    | T <sub>stg</sub> | $-55 \sim +150$ | c          |  |
| Storage Temperature  | AN1458S                    | 1 Stg            | -55~+125        |            |  |

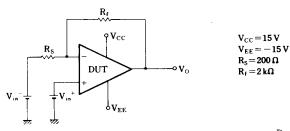
## ■ Electrical Characteristics $(V_{cc} = 15V, V_{EE} = -15V, Ta = 25^{\circ}C)$

| Item                            | Symbol                 | Test<br>Circuit | Condition                            | min.  | typ.   | max.   | Unit      |
|---------------------------------|------------------------|-----------------|--------------------------------------|-------|--------|--------|-----------|
| Input Offset Voltage            | V <sub>I(offset)</sub> | 1               | $R_S \leq 10 k\Omega$                |       | 0.5    | 4      | mV        |
| Input Offset Current            | I <sub>10</sub>        | 1               |                                      |       | 10     | 100    | nA        |
| Input Bias Current              | IBias                  | 1               |                                      |       | 50     | 250    | nA        |
| Voltage Gain                    | Gv                     | 1               | $R_L \ge 2k\Omega$ , $V_0 = \pm 10V$ | 86    | 106    |        | dB        |
| Maximum Output Voltage          | V <sub>D(max.)</sub>   | 2               | $R_L \ge 10 k\Omega$                 | ±12   | ±14    |        | V         |
|                                 |                        | 2               | R <sub>L</sub> ≥2kΩ                  | ±10   | ±13    |        | V         |
| Common-Mode Input Voltage Width | V <sub>CM</sub>        | 3               |                                      | ±12   | ±13    |        | V         |
| Common-Mode Rejection Ratio     | CMR                    | 1               | Rs≤10kΩ                              | 70    | 90     |        | dB        |
| Supply Voltage Rejection Ratio  | SVR                    | 1               | $R_S \leq 2k\Omega$                  |       | 3      | 150    | $\mu V/V$ |
| Supply Current                  | $I_{cc}$               | 4               | $R_L = \infty$                       |       |        | 5.6    | mA        |
| Power Consumption               | Pc                     | 4               | $R_L = \infty$                       |       |        | 170    | mW        |
| Output Short-Circuit Current    | I <sub>O(short)</sub>  | 2               |                                      |       | ±20    |        | mA        |
| Slew Rate                       | SR                     | 5               |                                      | www.D | ataShe | et4U.c | OM/μs     |


## Test Circuit 1 ( $V_{I(offset)}$ , $I_{I0}$ , $I_{Bias}$ , $G_V$ , CMR, SVR)

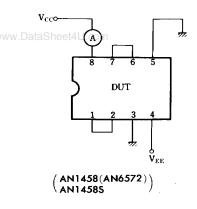


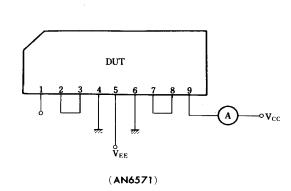
| Item                                      | Measurement Conditions                                                                                                                                                                                                                                                                                                                          |  |  |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| v.DataSheet4U.com<br>Input Offset Voltage | $V_{\text{F1}}$ is measured with the SW <sub>1</sub> , SW <sub>2</sub> and SW <sub>3</sub> set to OFF and $E_{\text{C}}\!=\!E_{\text{K}}\!=\!OV$ . Can be given by $V_{\text{Hoffset})}\!=\!\frac{V_{\text{F1}}}{400}(V)$                                                                                                                       |  |  |
| Input Offset Current                      | $V_{\text{F2}}$ is measured with the SW <sub>1</sub> and SW <sub>2</sub> set to ON, the SW <sub>3</sub> set to OFF and $E_c = E_\kappa = \text{OV}$ . Can be given by $I_{\text{t0}} = \frac{\mid V_{\text{F2}} - V_{\text{F1}} \mid}{4 \times 10^6} (A)$                                                                                       |  |  |
| Input Bias Current                        | $V_{\text{F3}}$ is measured with the SW <sub>3</sub> set to OFF, $E_c = E_k = OV$ , the SW <sub>1</sub> set to ON and the SW <sub>2</sub> set to OFF, $V_{\text{F4}}$ is measured with the SW <sub>1</sub> and SW <sub>2</sub> reversed. Can be given by, $I_{\text{BiBS}} = \frac{\mid V_{\text{F3}} - V_{\text{F4}} \mid}{8 \times 10^6} (A)$ |  |  |
| Voltage Gain                              | $V_{\text{F5}}$ is measured with the SW <sub>1</sub> ' SW <sub>2</sub> and SW <sub>3</sub> set to ON, $E_c$ =OV and $E_{\text{K}}$ =10V. $V_{\text{F5}}$ is measured with $E_{\text{K}}$ =-10V. Can be given by $G_{\text{V}}$ =20log $\left(\frac{8000}{\mid V_{\text{F5}} - V_{\text{F}} \mid_{5} \mid}\right)$                               |  |  |
| Common-Mode<br>Rejection Ratio            | $V_{\text{F6}}$ is measured with both the $SW_1$ and $SW_2$ set to ON, the $SW_3$ set to OFF, $E_6 = OV$ and $E_C = 5V$ . $V_{\text{F6}}$ is measured with $E_C = -5V$ . Can be given by $CMR = 20 \log \left( \frac{4000}{\mid V_{\text{F6}} - V_{\text{F6}} \mid r \mid} \right)$                                                             |  |  |
| Supply Voltage<br>Rejection Ratio I       | $V_{F7}$ is measured with both the $SW_1$ and $SW_2$ set to ON, the $SW_3$ set to OFF, $E_R = E_C = OV$ and $V_{CC} = 10V$ . Can be given by $SVR(+) = \frac{\mid V_{F7} - V_{F2} \mid}{2 \times 10^3}$                                                                                                                                         |  |  |
| Supply Voltage<br>Rejection Ratio II      | $V_{\text{F8}}$ is measured with both the $SW_1$ and $SW_2$ set to ON, the $SW_3$ set to OFF, $E_{\text{K}} = E_{\text{C}} = OV$ and $V_{\text{EE}} = -10V$ . Can be given by $SVR(-) = \frac{ V_{\text{F8}} - V_{\text{F2}} }{2 \times 10^3}$                                                                                                  |  |  |


Note) When not specified in the above table,  $V_{\rm c\,c}\!=\!15V$  and  $V_{\rm EE}\!=\!-15V.$ 

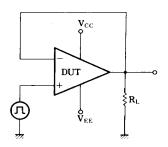
#### Test Circuit 2 (VO(max.), IO(short))

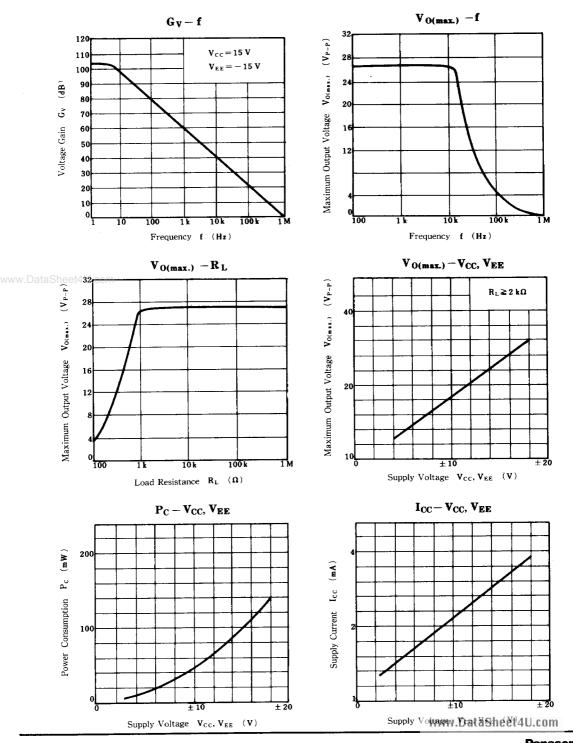


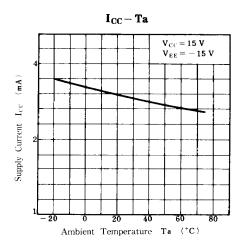

www.DataSheet4U.com

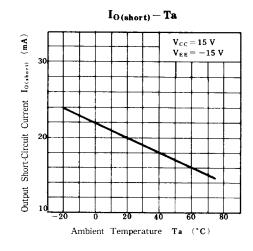

#### Test Circuit 3 (V<sub>CM</sub>)

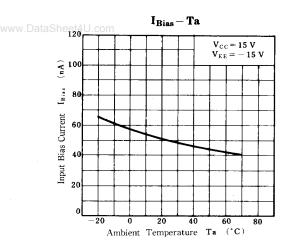



 $Note) \quad Apply \ a \ voltage \ of \ | \ v_{\text{in}^+}| > 12V \ and \ check \ \ V_o = V_{\text{in}^+} + \frac{R_f}{R_s} (V_{\text{in}^+} + V_{\text{in}^-})$ 


### Test Circuit 4 (I<sub>CC</sub>, P<sub>C</sub>)

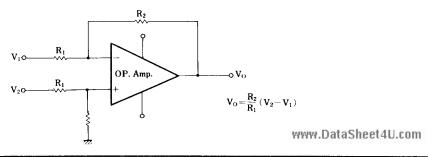




## Test Circuit 5 (SR)












## ■ Application Circuit

## Differential Amplifier Circuit

